

No need to look into the crystal ball ...

... mass spectrometric studies and computational methods reveal for the first time that a bimetallic oxide cluster couple, $AlVO_3^+/AlVO_4^+$, provides an ideal model for the room-temperature catalytic oxidation of CO by N_2O . In their Communication on page 12351 ff. H. Schwarz, M. Schlangen, and co-workers show that the overall catalytic process is promoted by the radical oxygen center of the $Al-O_{terminal}$ unit and not by the $V=O_{terminal}$ moiety.

Inside Cover

Zhe-Chen Wang, Nicolas Dietl, Robert Kretschmer, Thomas Weiske, Maria Schlangen,* and Helmut Schwarz*

No need to look into the crystal ball mass spectrometric studies and computational methods reveal for the first time that a bimetallic oxide cluster couple, AlVO $_3$ +/ AlVO $_4$ +, provides an ideal model for the room-temperature catalytic oxidation of CO by N $_2$ O. In their Communication on page 12351 ff. H. Schwarz, M. Schlangen, and coworkers show that the overall catalytic process is promoted by the radical oxygen center of the Al–O $_{\text{terminal}}$ unit and not by the V=O $_{\text{terminal}}$ moiety.

